Regulation of cardiomyocyte proliferation and myocardial growth during development by FOXO transcription factors.
نویسندگان
چکیده
Cardiomyocytes actively proliferate during embryogenesis and withdraw from the cell cycle during neonatal stages. FOXO (Forkhead O) transcription factors are a direct target of phosphatidylinositol-3 kinase/AKT signaling in skeletal and smooth muscle and regulate expression of the Cip/Kip family of cyclin kinase inhibitors in other cell types; however, the interaction of phosphatidylinositol-3 kinase/AKT signaling, FOXO transcription factors, and cyclin kinase inhibitor expression has not been reported for the developing heart. Here, we show that FOXO1 and FOXO3 are expressed in the developing myocardium concomitant with increased cyclin kinase inhibitor expression from embryonic to neonatal stages. Cell culture studies show that embryonic cardiomyocytes are responsive to insulin-like growth factor 1 stimulation, which results in the induction of the phosphatidylinositol-3 kinase/AKT pathway, cytoplasmic localization of FOXO proteins, and increased myocyte proliferation. Likewise, adenoviral-mediated expression of AKT promotes cardiomyocyte proliferation and cytoplasmic localization of FOXO. In contrast, increased expression of FOXO1 negatively affects myocyte proliferation. In vivo myocyte-specific transgenic expression of FOXO1 during heart development causes embryonic lethality at embryonic day 10.5 because of severe myocardial defects that coincide with premature activation of p21(cip1), p27(kip1), and p57(kip2) and decreased myocyte proliferation. Transgenic expression of dominant negative FOXO1 in cardiomyocytes does not obviously affect heart development at embryonic day 10.5, but results in abnormal morphology of the myocardium by embryonic day 18.5 along with decreased cyclin kinase inhibitor expression and increased myocyte proliferation. These data support FOXO transcription factors as negative regulators of cardiomyocyte proliferation and promoters of neonatal cell cycle withdrawal during heart development.
منابع مشابه
FoxO Transcription Factors Promote Autophagy
In the heart, autophagy is required for normal cardiac function and also has been implicated in cardiovascular disease. FoxO transcription factors promote autophagy in skeletal muscle and have additional roles in regulation of cell size, proliferation, andmetabolism.Herewe investigate the role of FoxO transcription factors in regulating autophagy and cell size in cardiomyocytes. In cultured rat...
متن کاملFoxO transcription factors promote autophagy in cardiomyocytes.
In the heart, autophagy is required for normal cardiac function and also has been implicated in cardiovascular disease. FoxO transcription factors promote autophagy in skeletal muscle and have additional roles in regulation of cell size, proliferation, and metabolism. Here we investigate the role of FoxO transcription factors in regulating autophagy and cell size in cardiomyocytes. In cultured ...
متن کاملFoxO proteins: cunning concepts and considerations for the cardiovascular system.
Dysfunction in the cardiovascular system can lead to the progression of a number of disease entities that can involve cancer, diabetes, cardiac ischaemia, neurodegeneration and immune system dysfunction. In order for new therapeutic avenues to overcome some of the limitations of present clinical treatments for these disorders, future investigations must focus upon novel cellular processes that ...
متن کاملFoxp1 coordinates cardiomyocyte proliferation through both cell-autonomous and nonautonomous mechanisms.
Cardiomyocyte proliferation is high in early development and decreases progressively with gestation, resulting in the lack of a robust cardiomyocyte proliferative response in the adult heart after injury. Little is understood about how both cell-autonomous and nonautonomous signals are integrated to regulate the balance of cardiomyocyte proliferation during development. In this study, we show t...
متن کاملThe expression of the tumour suppressor HBP1 is down-regulated by growth factors via the PI3K/PKB/FOXO pathway.
Growth factors inactivate the FOXO (forkhead box O) transcription factors through PI3K (phosphoinositide 3-kinase) and PKB (protein kinase B). By comparing microarray data from multiple model systems, we identified HBP1 (high-mobility group-box protein 1) as a novel downstream target of this pathway. HBP1 mRNA was down-regulated by PDGF (platelet-derived growth factor), FGF (fibroblast growth f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 102 6 شماره
صفحات -
تاریخ انتشار 2008